Galaxies and AGN observations with LBT: results, issues and perspectives

LUCI-MOS of z~1.4 cluster

L. Magrini, V. Sommariva, G. Cresci, E. Sani, A. Galametz, M. Filippo, V. Petropoulou

AO imaging of nearby AGN E. Sani C. Arcidiacono R. Fanali E. Pinna, K Boutsia, L. Busoni, F. Mannucci, F. Quiros-Pacheco, A. Puglisi, F. Quiros-Pacheco, G. Risaliti, A. Marconi, M. Salvati, D. McCarthy

LBC imaging of z~6 QSO R. Gilli M. Mignoli, L. Morselli C. Vignali, A. Comastri, E. Sani, G. Zamorani, N. Cappelluti, <u>E. Vanze</u>lla, M. Brusa

OLBT Italia

Eleonora Sani - LBT Users' Meeting - 23 Mar 2014

NGC 2273 AO imaging: PISCES@LBT

HST NIC+WFPC2 2 inner spiral arms (Erwin & Sparke 2003)

Which mechanism drag the gas to feed the SMBH?

Trace inner morphological structures + gas and dust distribution

1 arcmin

NGC 2273 AO imaging: PISCES@LBT

Lack of multi-band imaging → No dusty structures morphology

R+I = 15.5+15.0 + → poor SR seeing > 1" Still enough to detect 3mspirals

 1 arcsec

NGC 2273 AO imaging: PISCES@LBT

Lack of multi-band imaging → No dusty structures morphology

R+I = 15.5+15.0 + → poor SR seeing > 1" Still enough to detect 3mspirals

NGC 2273: simulations

-40

-20

Gaseous disk Exponential density profile

- $M_{disk} = 23*10^7 M_{sun}$
- R = 100 pc

• z = 30 pc

(Sani +12, PdBI data)

SB(r)a morphology

GADGET2 (Springel +05)

- Static axisymmetric potential from SIS
- Implements weak perturbations $\Phi_{\rm h} = \epsilon(r) \Phi(R) \cos 2(9 - \Omega_{\rm h}t)$
- Evolution 40 Myr

 \diamond Double bar Ω_{b1}/Ω_{b2} =3 (resonances)

40 Column Density 20 Log 0 > -2 -20 -40

0

20

40

R. Fanali's PhD thesis

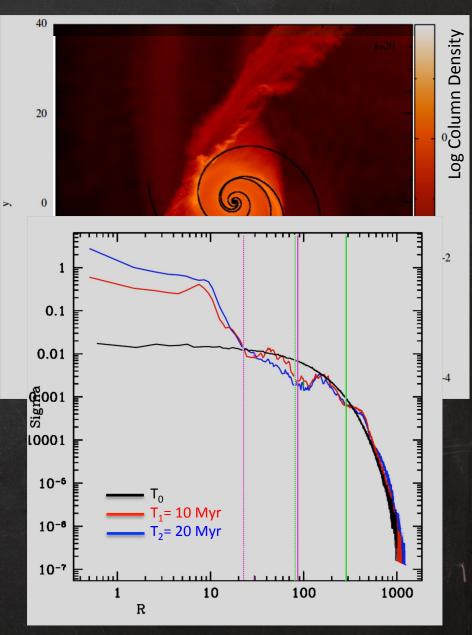
NGC 2273: simulations

Gaseous disk Exponential density profile

- $M_{disk} = 23*10^7 M_{sun}$
- R = 100 pc

• z = 30 pc

(Sani +12, PdBI data)


SB(r)a morphology

GADGET2 (Springel +05)

- Static axisymmetric potential from SIS
- Implements weak perturbations $\Phi_{\rm h} = \epsilon(r) \Phi(R) \cos 2(9 - \Omega_{\rm h} t)$
- Evolution 40 Myr

 \diamond Double bar Ω_{b1}/Ω_{b2} =3 (resonances)

R. Fanali's PhD thesis

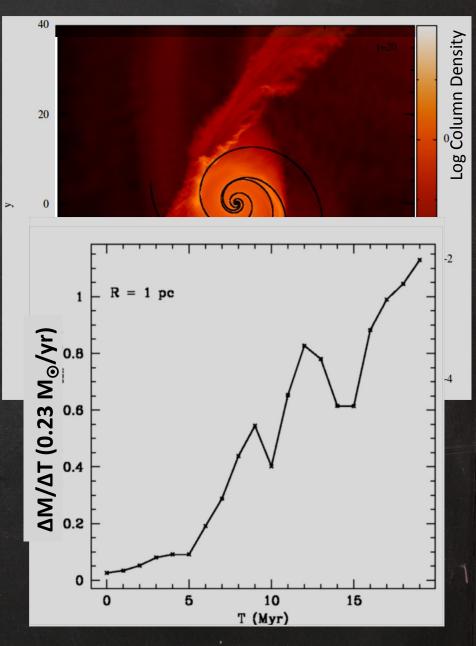
NGC 2273: simulations

Gaseous disk Exponential density profile

- $M_{disk} = 23*10^7 M_{sun}$
- R = 100 pc

• z = 30 pc

(Sani +12, PdBI data)


SB(r)a morphology

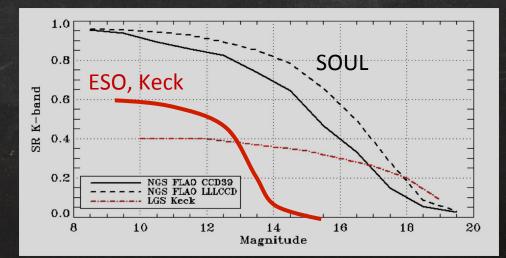
GADGET2 (Springel +05)

- Static axisymmetric potential from SIS
- Implements weak perturbations $\Phi_{\rm h} = \epsilon(r) \Phi(R) \cos 2(9 - \Omega_{\rm h}t)$
- Evolution 40 Myr

 \diamond Double bar Ω_{b1}/Ω_{b2} =3 (resonances)

R. Fanali's PhD thesis

Extragalactic science with FLAO

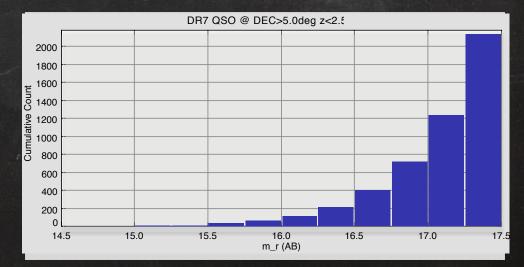

Sample properties						
Target	R.A. dec.	Z	R+I			
NGC 1068•	02:42:40.7 -00:00:48	0.0038	11.1 + 9.9			
Mrk 1066*	02h59m58.6s +36d49m14s	0.011	13.9 + 12.3			
NGC 2273**	06h50m08.6s +60d50m45s	0.0061	14.5 + 14.0			
NGC 3079	10h01m57.8s + 55d40m47s	0.0037	12.2 + 10			
NGC 3227	10h23m30.6s +19d51m54s	0.0038	11.9 + 11.1			
NGC 4051	12h03m09.6s +44d31m53s	0.0023	12.1+11.3			
NGC 4941**	13h04m13.1s -05d33m06s	0.0037	10.6 + 9.9			
NGC 5005**	13h10m56.2s +37d03m33s	0.0032	14.1 + 14.2			
NGC 5033	13h13m27.4s +36d35m38s	0.0029	14.5 + 14.2			
NGC 5194	13h29m52.7s +47d11m43s	0.0015	9.5 + 10.5			
NGC 6764	19h08m16.4s +50d56m00	0.0081	13.9 + 14.3			
NGC 6951	20h37m14.1s + 66d06m20s	0.0048	14.5 + 15.1			

Extragalactic science with SOUL

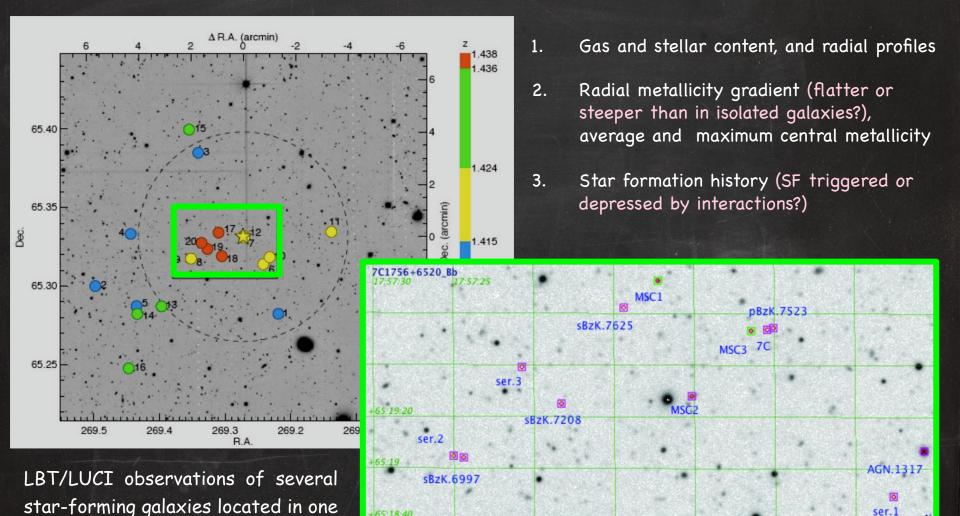
Sample properties					
Target	R.A. dec.	Z	R+I		
NGC 1068•	02:42:40.7 -00:00:48	0.0038	11.1+9.9		
Mrk 1066•	02h59m58.6s +36d49m14s	0.011	13.9 + 12.3		
NGC 2273**	06h50m08.6s + 60d50m45s	0.0061	14.5 + 14.0		
NGC 3079	10h01m57.8s + 55d40m47s	0.0037	12.2 + 10		
NGC 3227	10h23m30.6s +19d51m54s	0.0038	11.9+11.1		
NGC 4051	12h03m09.6s +44d31m53s	0.0023	12.1+11.3		
NGC 4941 **	13h04m13.1s -05d33m06s	0.0037	10.6 + 9.9		
NGC 5005**	13h10m56.2s +37d03m33s	0.0032	14.1 + 14.2		
NGC 5033	13h13m27.4s +36d35m38s	0.0029	14.5 + 14.2		
NGC 5194	13h29m52.7s +47d11m43s	0.0015	9.5 + 10.5		
NGC 6764	19h08m16.4s +50d56m00	0.0081	13.9 + 14.3		
NGC 6951	20h37m14.1s + 66d06m20s	0.0048	14.5 + 15.1		

AGN-related topics:

- ♦ Feeding/fedback processes at low-z
- AGN close pairs (useful byproduct)
- \diamond QSO host galaxies at high-z
- \diamond DLA systems



Extragalactic science with SOUL

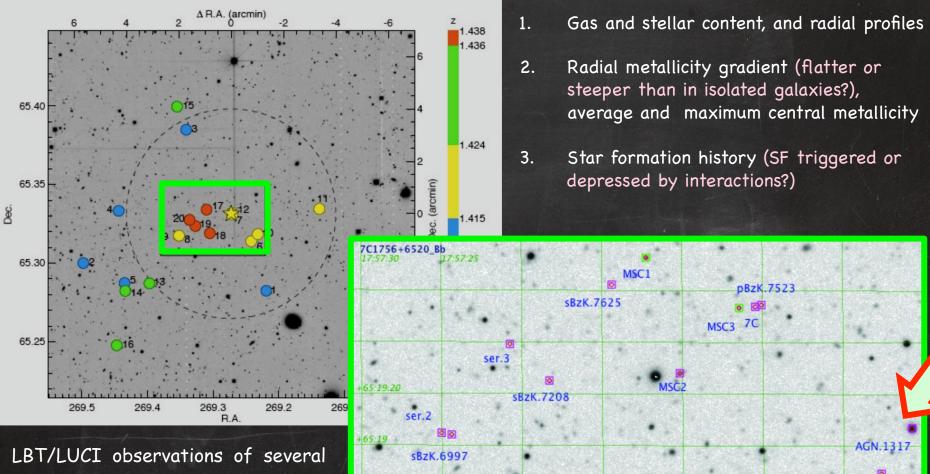

Sample properties					
Target	R.A. dec.	Z	R+I		
NGC 1068•	02:42:40.7 -00:00:48	0.0038	11.1+9.9		
Mrk 1066*	02h59m58.6s +36d49m14s	0.011	13.9 + 12.3		
NGC 2273**	06h50m08.6s +60d50m45s	0.0061	14.5 + 14.0		
NGC 3079	10h01m57.8s + 55d40m47s	0.0037	12.2 + 10		
NGC 3227	10h23m30.6s +19d51m54s	0.0038	11.9+11.1		
NGC 4051	12h03m09.6s +44d31m53s	0.0023	12.1 + 11.3		
NGC 4941**	13h04m13.1s -05d33m06s	0.0037	10.6 + 9.9		
NGC 5005**	13h10m56.2s +37d03m33s	0.0032	14.1 + 14.2		
NGC 5033	13h13m27.4s +36d35m38s	0.0029	14.5 + 14.2		
NGC 5194	13h29m52.7s +47d11m43s	0.0015	9.5 + 10.5		
NGC 6764	19h08m16.4s +50d56m00	0.0081	13.9 + 14.3		
NGC 6951	20h37m14.1s + 66d06m20s	0.0048	14.5 + 15.1		

AGN-related topics:

- ♦ Feeding/fedback processes at low-z
- AGN close pairs (useful byproduct)
- \diamond QSO host galaxies at high-z
- \diamond DLA systems

7C 1756+6520 z~1.4 cluster: LUCI-MOS

30"


of the farthest spectroscopic

confirmed clusters, around the

radio galaxy 7C 1756+6520 at z~1.4

from Galametz et al. 2010

7C 1756+6520 z~1.4 cluster: LUCI-MOS

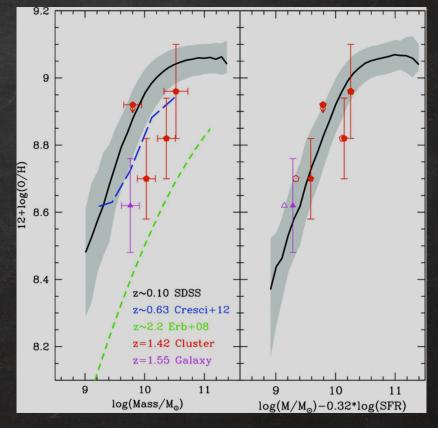
65-18-4

30"

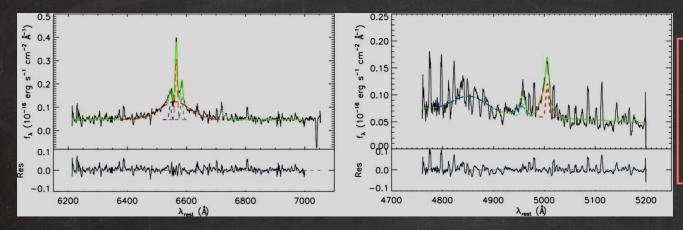
star-forming galaxies located in one of the farthest spectroscopic confirmed clusters, around the radio galaxy 7C 1756+6520 at z~1.4

from Galamets et al. 2010

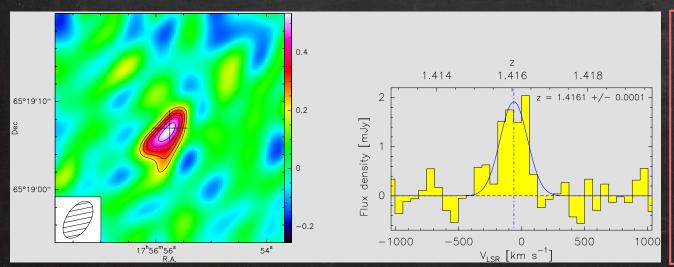
ser.]


7C 1756+6520: high spectral resolution obs

The galaxies in the $z \sim 1.4$ cluster are consistent with the FMR, suggesting that the effect of the environment is not dominant in the early phases of their evolution, at least in the considered mass range.


 $\mbox{H}\alpha$ and [NII] lines to derive the galaxy Z and SFR.

M* comes from SED fitting NO J-band flux calibration

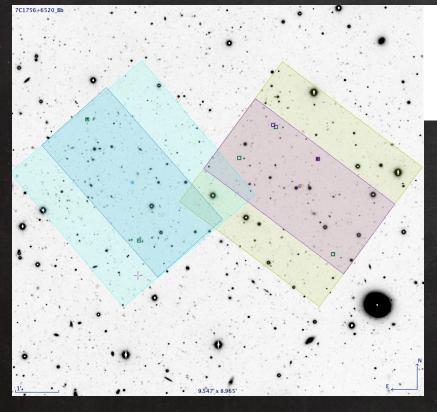


Magrini L., E. S., et al. MNRAS 2012, 42, 1195

AGN.1317: a bright, gas-rich AGN in the cluster

LBT observations reveal a strong gas outflow reaching velocities ~1800 km s⁻¹ that is possibly driven by the AGN radiation pressure

IRAM PdBi follow-up: Aiming to find a trace of the high molecular gas content in primeval clusters, we searched for the ${}^{12}CO(2-1)$ line emission in AGN.1317, detecting indeed a large amount of molecular gas of the order $10^{10}M_{\odot}$


Casasola, L. M., E. S., et al. (2013)

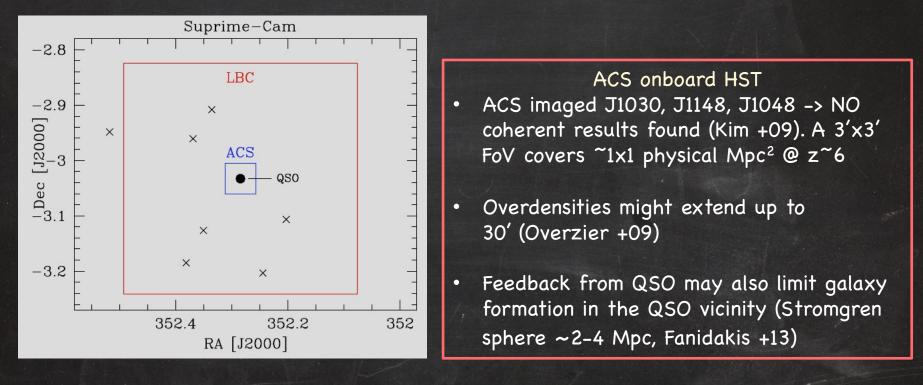
New LUCI-MOS: due in spring 2014

Is AGN.1317 special or all AGN in high-z clusters are characterized by strong outflows and high gas content?

AIM: to observe the <u>population of known AGN in the z=1.4 galaxy cluster</u> to find:

- the contribution of star formation and nuclear activity;
- relate them to the location in the cluster;
- to study gas outflows;
- select candidates for mm observations, as already done for AGN.1317.

List of the spectroscopically confirmed AGN	List of the	spectroscopically	confirmed	AGN
---	-------------	-------------------	-----------	-----


Name	RA	Dec	^z spec	В	Z	к
AGN.1110	17:56:52.56	65:16:56.65	1.3935 ± 0.0012	23.21	22.14	20.89
sBzK.7556	17:57:46.54	65:20:00.48	1.4081 ± 0.0007	20.97	20.77	20.35
AGN.1354	17:57:04.98	65:19:51.00	1.4153 ± 0.0003	26.34	22.03	-
7C 1756+6520	17:57:05.48	65:19:53.75	1.4156 ± 0.0001	>27.1	21.40	20.17
AGN.1317	17:56:55.75	65:19:07.00	1.4162 ± 0.0005	20.16	19.46	19.01
sBzK.5860	17:57:35.34	65:17:14.39	1.4268 ± 0.0005	22.96	22.35	21.31
AGN.1206	17:57:13.08	65:19:08.37	1.4371 ± 0.0002	>27.1	>25.0	21.49

Our main questions:

- How do AGN in high-z clusters behave?
 What is the contribution of star formation and nuclear activity in AGN belonging to high-z clusters?
- Is there any relationship between AGN activity and location within the cluster?

The environment of z~6 QSOs: LBC-BIN

Brightest SDSS QSOs ($M_{BH} > 10^9 M_{\odot}$) are often thought to reside in the most massive halos at their epoch \rightarrow likely associated to galaxy overdensities

 3σ overdensity of i-drops around a z=6.43 QSO found with 34'x27' Suprime-cam (Utsumi+10)

Etendue: SuprimeCam @ Subaru vs LBC @ LBT 53 m² x 0.26 deg² = 13.5 m² x deg² vs 111 m² x 0.16 deg² = 17.8 m² x deg² Currently SuprimeCam is the only possible competitor for LBC

z~6 QSOs: LBC observing strategy

BC blue

LBC red

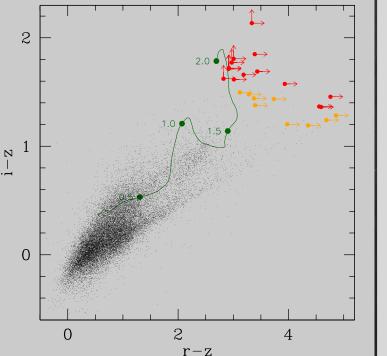
3 hr

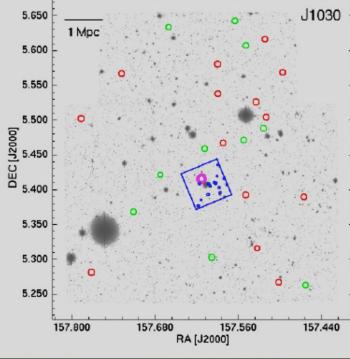
1.5 hr

1.5 hr

Four SDSS QSOs at z^{6} with M_{BH} >10⁹ M_{sun}

Target	Z	M ₁₄₅₀	M _{BH} 10 ⁹ M _{sun}	Z _{AB}
SDSSJ1148+5251	6.41	-27.8	4.9	20.1
SDSSJ1030+0524	6.28	-27.2	3.2	20.0
SDSSJ1048+4637	6.20	-27.6	3.9	19.9
SDSSJ1411+1217	5.95	-26.8	1.2	19.6


1.5hr z_{SDSS} + 1.5hr i_{SDSS} on the LBC-red channel and simultaneous 3hr in r_{SDSS} on the LBC-blue channel for each field

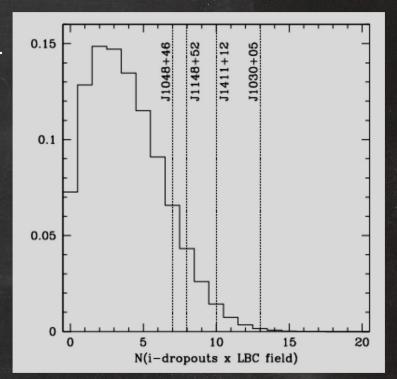

- Good seeing: FWHM ~0.7-0.8 in z-band
- Deep imaging: z=25-25.2 (5 σ limits, 50% completeness) i~26.6; r~27.2
- Photometric catalogs: master catalog in z-band, colors computed in dual-mode
 - ~ 2.5 x 10⁴ z-band selected objects per field

z~6 QSOs: analysis

Dropout selection: primary (i-z)- $\sigma_{(i-z)}$ > 1.3 secondary 1.1 < (i-z)- $\sigma_{(i-z)}$ < 1.3 comparison i-z >1.4

Field	Primary	Secondary	Comparison
J1030	14	10	16
J1148	8	3	10
J1048	6	9	9
J1411	11	8	12

asymmetric distribution in most fields

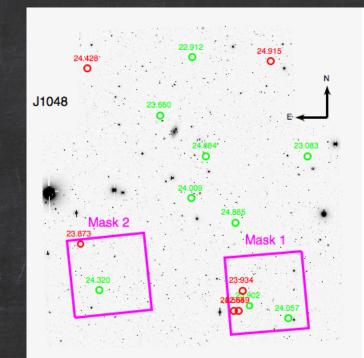

$z \sim 6$ QSO Overdensities $\delta = (\rho / \rho_{bf}) - 1$

Subaru X-ray Deep Survey (SXDS, Furusawa+08)

1) deepest than LBC cats.

2) area SXDS ~ 8xLBC area (1.13 vs 0.144 deg²)
3) z-band selected catalogs with multiband phot publicly available

Field	ρ	ρ _d	δ	σ _δ
J1030	16	13	2.0	3.3
J1148	10	8	0.9	1.9
J1048	9	7	0.6	1.7
J1411	12	10	1.3	2.5
	SHI / SHI PASURASI			Rent / Rentered



→ High-z QSOs reside in overdense environments at the 3.7 σ level Morselli et al. 2014 submitted r ,i ,z fits images and catalogs available at: http://www.oabo.inaf.it/~LBTz6/

z~6 QSO Follow-up

Forthcoming datasets:

MODS MOS in J1048: 2 masks, 6hr each approved (program 2013B_4)
4.5hr executed on mask1 + 3.5h on mask2 in Jan/Feb2014 run

- CFHT/WIRCAM J-band imaging to J_{AB}=24.2 (3hr on both J1030 and J1048)

Submitted proposals: VLT/FORS2 on J1030, ~30hr Chandra on J1030 + J1148, Subaru/FOCAS on J1030 + J1048

Other science goals: faint QSO at z=4-5 (r-dropouts) groups at z=0.7-1.1