The Large Binocular Telescope in the Era of Gravity Wave Detection

Peter Garnavich (Notre Dame)

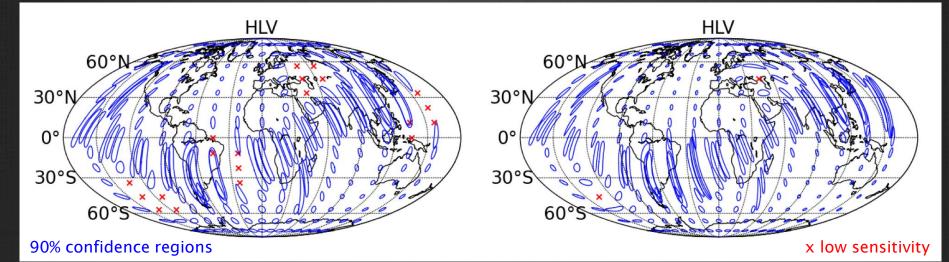
The Future: Gravity Waves

 \diamond In the next 5 years gravitational waves will be directly detected

- Advanced LIGO (aLIGO) with two detectors will begin science runs in 2015
- Advanced Virgo (AdV) in Europe will begin science runs in 2016
- Identification of "Electromagnetic" counterparts will be critical in confirming the GW transient and in interpreting the physics
- ♦ Seems far off, but this will happen fast and we need to be prepared

		Estimated	$E_{\rm GW} = 10^{-2} M_{\odot} c^2$				Number	% BNS	Localized
		Run	Burst Range (Mpc)		BNS Range (Mpc)		of BNS	within	
Epe	och	Duration	LIGO	Virgo	LIGO	Virgo	Detections	$5{ m deg}^2$	$20{ m deg}^2$
20	15	3 months	40 - 60	—	40 - 80	_	0.0004 - 3	—	—
2016	6–17	6 months	60 - 75	20-40	80 - 120	20-60	0.006 - 20	2	5-12
2017	7–18	9 months	75 - 90	40-50	120 - 170	60-85	0.04 - 100	1-2	10 - 12
201	9+	(per year)	105	40 - 80	200	65 - 130	0.2 - 200	3-8	8-28
2022+	(India)	(per year)	105	80	200	130	0.4 - 400	17	48

Aasi et al. 2013


GW Localization

♦ 2015 (aLIGO only) localizations will be poor/distance range 40-80 Mpc

- ♦ 2016-21 (+AdV) 20 to 100 square degrees/ distance range 80-120 Mpc
- ♦ 2022- (+India) 10 to 50 square degrees / distance range 200 Mpc

2016-2017

2017-2018

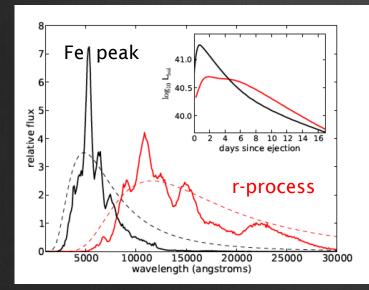
Aasi et al. 2013

GW Transients: What to Expect in EM

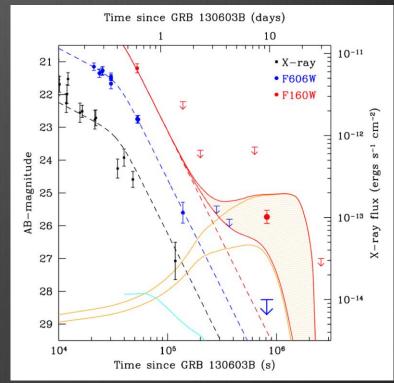
Bursts

Core-Collapse Supernovae Black Hole mergers Magnetar flare Long GRB Something New

- slowly rising optical, fast UV
- very little EM?
- soft gamma-rays
- hard gamma-rays
- radio? X-rays? IR rich?


Chirps

Compact Binary Coalescence Neutron Star Mergers


- short gamma-ray burst? Fast optical counterpart?

Best Guess EM

- ♦ The short/hard GRB e.g. 130603B
- ♦ Power-law decay in X-rays and optical
- ♦ Near-IR excess
- IR predicted by Kasen et al. (2013) –
 r-process in tidal debris of neutron star merger

Tanvir et al. 2013; Berger et al. 2013

♦ aka "kilonova"

♦ Might miss gamma-ray beam

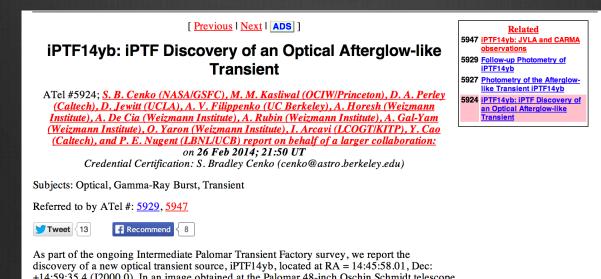
Kasen et al. 2013

The Deal

The aLIGO/AdV collaborations want EW follow-up

- But they worry about the race to publication and the possibilities of false alarms – including signal injections
- The first 4 GW alerts will be sent to groups that have signed MOUs
 agree not to publish until the aLIGO/AdV groups are ready
- \diamond GW alert trigger at false alarm rate 10⁻² /year or higher?
- ♦ After the first 4 alerts, all alerts will be made public (fun stuff done)
- \diamond How does this work for LBTO?

EM Follow-up

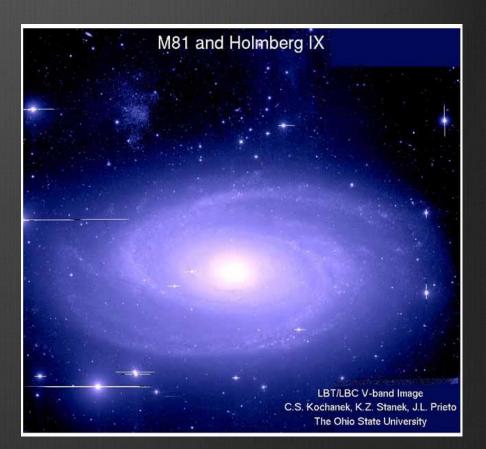

GRB detection possible but not likely due to beaming
 – localizations accurate from minutes (Swift) to degrees (IPN)

Most likely will depend on wide-field optical search
 iPTF, Atlas, ASAS-SN, Dark Energy Survey, SkyMapper, Catalina...

♦ Many optical candidates in 100 square deg – mostly supernovae

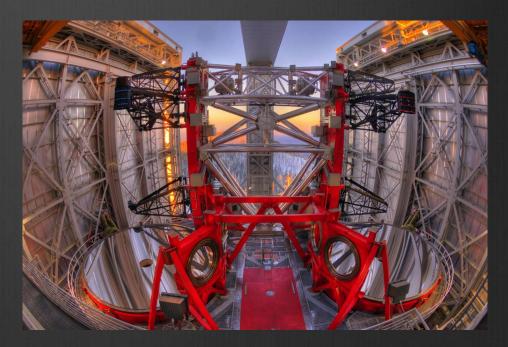
- use colors
- decay rate

♦ Spectroscopic follow-up will be critical in sorting candidates

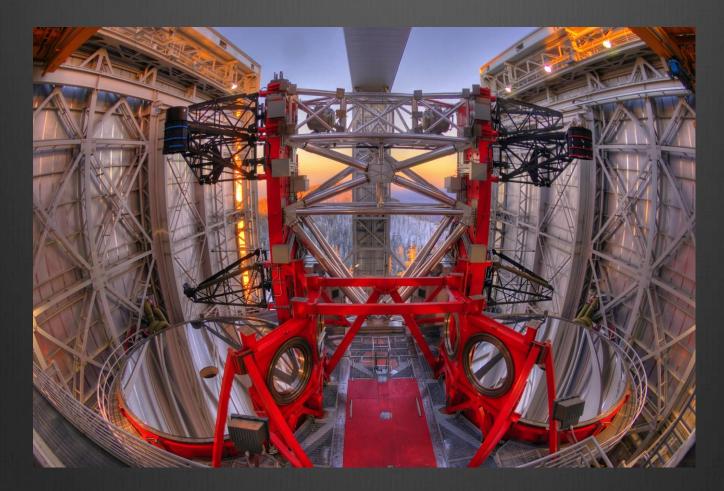

LBT Role

♦ LBC can image nearby galaxies in localization region

- get color efficiently
- multiple visits on a single night
- auto script generator
- fast subtractions

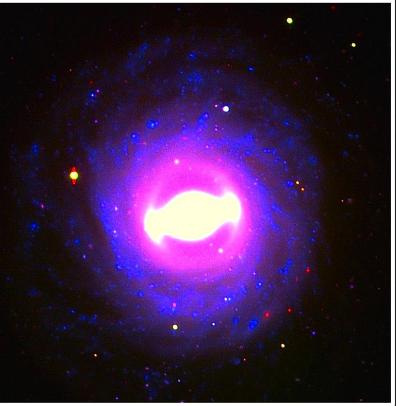

MODS spectra of candidates fed by wide field searches

LUCI imaging/spectra of candidates, r-process?



LBT & Time Domain

- ♦ How can LBTO contribute to GW/EM identification?
- ♦ Need a transient/time domain plan
- ♦ Director's Discretionary time with interruption during any block?
- ♦ Unified observing queue?
- ♦ Collaboration developed over all partner blocks?


Large Binocular Telescope

Two 8.4-m mirrors on the same mount – future interferometry Now: Two large telescopes with complementary instruments

Follow-up

- Large Binocular Camera: Red-optimized on the right, Blue-optimized on the left
- 23'x23' field of view enough to cover a nearby galaxy in a single image
- Simultaneous 2-filter imaging to search for transients with interesting colors
- MODS dual channel spectrograph cover 320 nm to 1 micron at moderate resolution
- LUCIFER near-IR imaging/spectrograph
 0.8 to 2.3 microns (two grating settings)
- Simultaneous UV, Optical, near-IR spectroscopy of a transient with MODS (left) and LUCIFER-II (right)

