Searching for Failed Supernovae:

Looking for Vanishing Supergiants with the LBT

Jill Gerke

The Ohio State University Advisor: Chris Kochanek

Collaborators: Kris Stanek, Dorota Szczygiel, Jose Luis Prieto

How do Massive Stars Die?

Supernova!

Ugliano et al. (2012)

Supernova SN2011dh in M51

- There seems to be a lack of M ≥ 20M_☉ SN Progenitors (Kochanek et al. 2008). More specifically, an absence of ~18-25M_☉ red supergiants (Smartt 2009)
- Theory finds that M~20M_o stars are harder to explode (O'Connor & Ott 2011; Ugliano et al. 2012)

Image credit: D. Szczygiel

Effects of Collapse: Loss of Envelope

- Lovegrove & Woosley (2013) explored what would happen as a consequence of mass-loss due to neutrino emission during core collapse (also see Nadyozhin 1980). It was found that the stellar envelope can be lost when a massive star experiences
 - rapid loss of $0.2-0.5M_{\odot}$ from the core
 - results in a low energy SN (~10⁴⁷ erg) and the loss of most of the hydrogen envelope
- With this loss of the envelope, having SN fail in the 16.5M_☉ ≤ M ≤ 25M_☉ range naturally explains the compact remnant mass function (Kochanek 2014)

Lovegrove & Woosley 2013

LBT Survey About Nothing

- Monitoring 25 galaxies within 10 Mpc for 5 years
 - 10⁶ supergiants
 - Combined SN rate of ~ 1 per year

- Data is taken with the LBCs
 - Blue side: UBV bands
 - Red side: R band

- Observation cadence
 - Typically twice per year
 - Cycling galaxies through a period of more intensive monitoring

Method

- ISIS image subtraction (Alard 2000)
- Differential photometry
 - Reduced crowding

30 day Cepheid, which corresponds to ~6M_☉ evolved star (Gerke et al. 2011)

Candidate Selection

- Examine all sources that change by $|VL_{\nu}| \ge 10^4 L_{\odot}$ from start to end
 - Fading $|vL_v| = 1.2 \times 10^4 L_{\odot}$

• Brightening $|VL_v| = 4.1 \times 10^4 L_{\odot}$

REF	RMS	20080309	20090128	20100319	20110429	20110605	20120322	20120428	20130110
	!		1						

Candidate Selection 2

- Examine all sources that have $VL_V \ge 10^5 L_{\odot}$ for a period of time then show a decrease in luminosity below that limit
- Examine all sources that show ΔL change of $VL_{\nu} \ge 10^5 L_{\odot}$ at any time

• fading $|VL_{v}| = 1.0 \times 10^{5} L_{\odot}$

SN 2011dh

- We detect the death of this star independent of the SN transient
- Fading $|vL_v| = 2.4 \times 10^4 L_{\odot}$ (3.7×10⁴L_{\odot} as of June 2013)

R band: regular images

R band: subtracted images

Processing the Candidates

- Using the described criteria, we determine a list of candidates
- If PSF photometry of last images matches ISIS photometry the candidate is considered securely detected and not a failed SN
- If photometry does not match we visually inspect the candidate
- Current State:
 - Almost all galaxies are calibrated and a candidate list has been produced.
 - We are eye checking the candidates when necessary, using the different photometric bands to help in ambiguous cases

Current Candidates

- The average galaxy:
 - 4.05% of galaxy is masked
 - There are 100 round1 candidates
 - There are 7 round 2 candidates
 - There is ~I round 3 candidate
- I6 galaxies, I10 round 2 candidates, I3 round 3 candidates

• Example Round 3 candidate:

What is the Failed SN rate?

Normal SN rate: $R_{sn} \simeq I$ per year

Survey baseline: 4 years with 2 observed ccSNe

Expected Number of Failed SN: $N_{fs} = (I - f_{fs}) \times N_{sn}$

If we find no viable candidates at this point in the survey, our limit on the failed SN rate is $f_{fs} \leq 54\%$ at 90% confidence limit.

Future Limits: If the failed SN rate is $f_{fs} \approx 10\%$, 20% or 30%, a 9 year survey, with an expected sample of 7 successful ccSNe, has a 54%, 83% and 95% probability of success.

Summary and Future

- It is possible that a significant number of massive stars end their lives as failed supernova
- Our "Survey About Nothing" has been monitoring ~10⁶ supergiants with the Large Binocular Telescope over the past 4-5 years.
- The "Survey About Nothing" is also creating a catalog of SN progenitors and enables many other studies.
- This first analysis of the data will place limits on the Failed Supernova rate of $f_{fs} \lesssim 54\%$ the SN rate at 90% confidence.
- We will continue the survey and with more time will be able to improve upon these limits.