No stripped hydrogen in the nebular spectra of nearby Type Ia Supernova 2011fe

Benjamin J. Shappee1,2,3, K. Z. Stanek1,3, R. W. Pogge1,3, & P. M. Garnavich4

1Ohio State University, 2NSF Graduate Fellow, 3CCAPP, 4University of Notre Dame
Supernovae

- Explode in a wide range of environments
- Affect the evolution of their host galaxies
- Creation and dispersal of metals

Shappee et al. 2014
Accelerating Universe

High-Z SN Search Team
Riess et al. (1998)

Supernova Cosmology Project
Perlmutter et al. (1999)
Standardizable Candles

Jha, Riess, & Kirshner (2007)
Double Degenerate Progenitor

- Collisions or merger of two WDs
- There are many variants, mergers due to:
 - Gravitational radiation (Tutukov & Tungelson 1979; Iben & Tutukov 1984; Webbink 1984)
 - Collision from three-body interactions (Thompson 2012; Katz & Dong 2013)
- Few observable consequences
Single Degenerate Progenitor

- WD accretes material from a non-degenerate companion until exceeds the Chandrasekhar Mass (Whelan & Iben 1973; Nomoto 1982)

- Companion can be:
 - Main-sequence star
 - Sub-giant
 - Red giant
 - Helium star

- Many possible observable consequences
SN Ejecta Impact on Companion
SN Ejecta Impact on Companion

- Material in the SN ejecta will remove material from companion (Wheeler et al. 1975)

- Hydrodynamic simulations show main sequence and sub-giant donors will lose \(\sim 15\% \) of their mass (e.g., Pan et al. 2012, Liu et al. 2012)

- Star is left with a hot, extended, asymmetric envelope containing \(\sim 10\% \) of the mass
• Mass-loss mainly occurs due to ablation (shock-mediated heat transfer) and not stripping (momentum transfer) – Pan et al. (2012)

• Material is embedded in low-velocity SN ejecta with characteristic velocities of $\approx 1000 \ km \ s^{-1}$

• Let’s look for this material!

Liu et al. (2012)
SN 2011fe

- Brightest SN Ia since SN 1972E
- At only 6.4 Mpc (Shappee & Stanek 2011)
- Discovered less than 1 day after explosion by Palomar Transient Factory (Law et al. 2009)
- Extensive follow-up observations (from the radio to gamma rays)
- Normal “Plain Vanilla” Type Ia SN
- Only slightly reddened and in “clean” environment (Patat et al. 2011)
Supernova 2014J in Galaxy M82

Hubble Space Telescope • WFC3/UVIS • ACS/WFC

NASA and ESA
LBT and SN 2011fe

- 8 MODS spectra from 70 – 850 days are B-band maximum light
- LBC U,B,V,R-band observations
 - Before the SN and continuing
 - Part of the LBT monitor project (see Jill Gerke’s talk... NEXT!!!)

- Shappee et al. 2014 in prep.
Nebular Phase Spectra Comparison

Shappee et al. 2013
Nebular Phase Spectra

- Conservative limit on hydrogen flux of
 $< 3.14 \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$

- Adopting the models of Mattila et al. (2005), these limits translate into a mass limit of
 $< 0.001 M\odot$

- This limit rules out non-degenerate hydrogen-rich companions

-- Shappee et al. 2013
Golden Standard

The LBT late-time spectra of SN 2011fe are already being used as the standard comparison for SNe Ia.

- Dong et al. 2014
Shappee et al. (2014),
Spectra are from the Large Binocular telescope and The Nearby Supernova Factory
Inspired by http://snfactory.lbl.gov/snf/data/index.html