The double RGB in M2 seen through MODS spectroscopy

Carmela Lardo INAF OA Bologna

The photometric evidence of MPs

NGC 288 Piotto et al. 2012

The spectroscopic evidence of MPs

Stars **depleted** in C and **enhanced** in N are also **depleted** in O and Mg and **enhanced** in Na and Al !

.. but generally no spread in iron! [>] High-temperature H-burning (CNO, NeNa, MgAl cycles)

Smith & Norris (1982)

New chemical enrichment

Valcarce & Catelan 2011

This peculiar chemical pattern must be originated in a previous generation of more massive stars in the <u>first few hundred Myr</u> of the cluster life, that polluted the gas from which second generation stars formed, <u>modifying</u> <u>light element content but not contributing IRON!</u>

UV photometry and light element abundances

UV photometry and light element abundances

[Fe/H] = -1.62 Y = 0.246

1st generation star (black):

standard a-enhanced mixture

2nd generation ref star (red):

N + 1.8 dex (by mass) Na + 0.8 dex C -0.6 dex O -0.8 dex

Sbordone+11

The discovery of a red RGB in M 2

The discovery of a red RGB in M 2

Lardo at al. 2012b

M 2: characterizing the red RGB with MODS

MODS@LBT SPECTRA 15 low-res spectra of RGB stars (PI: C. Lardo)

M 2: characterizing the red RGB with MODS Lardo et al. 2013

Stars with **the same temperature**, the spectra of the stars are virtually identical apart from the molecular features

M 2: characterizing the red RGB with MODS

M 2: s-process element bimodality

s-process bimodality: M 22, NGC 1851, NGC 362, Omega Cen (Gratton et al. 2012, Carretta et al 2010, Carretta et al. 2013 ...)

Conclusions

U photometry (LBC, see also SUMO – M. Monelli)

Trace multiple populations phenomenon (LARGE SAMPLES, LESS OBSERVING TIME)

- Study radial trends
- Derive population ratios

Low-resolution spectroscopy (MODS)

Useful complement to high-resolution observations

- Study multiple populations in faint stars
- Detect multiple populations in far away clusters (extragalactic environments)

M 2: spectral indices

Lardo et al. 2013