

Deep Field Observations with the LBC

Teresa Ashcraft Arizona State University

LBT User's Meeting 2017; Florence, Italy

Outline:

Classic Legacy Deep Field: GOODS-North

New Legacy Deep Field: JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF)

Collaboration of several member partners (Az, OSURC, INAF) to observe the CANDELS deep fields in the U-band

GOODS-North Field

- Entire field fits in FOV of LBC
- Over 32 hours of LBCB Uspec time and 335 exposures

GOODS-North Field

Histogram of FWHM for each image

Dashed line is the cut-off for usable images 1.8" (optimized depth)

Dotted line is the median FWHM of 1.1"

Optimized Resolution: <0.8"

m_{AB} ~ 18.0 mag

m_{AB} ~ 20.8 mag

m_{AB} ~ 19.9 mag

HST F435W	LBC U-band (360) Optimal Resolution	LBC U-band (360) Optimal Depth
<u>4.0"</u>	<u>4.0"</u>	4.0"

m_{AB} ~ 18.3 mag

LBC U-band (360) Optimal Resolution

4.0"

LBC U-band (360) Optimal Depth

4.0"

Photometric zero-points were determined by matching our SExtractor catalogs to the KPNO HDF-N U-band catalog.

Over 100 stars were used

			Depth
Number of	Exposure	FWHM	(m _{AB}
Stacked Images	Time (Hours)	(arcsec)	mag)
33	3.2	0.77	27
62	6	0.81	27.4
96	9.1	0.87	27.6
150	14.2	0.96	27.8
195	18.8	1	28
241	23.2	1.03	28.1
269	26	1.06	28.2
290	28.1	1.08	28.2
315	30.4	1.1	28.3

Differential number counts for different mosaics compared to other U-band surveys

Surface Brightness Profiles measured for the 220 brightest galaxies in field m_{AB} < 23 mag

Red: Optimized Depth Image

Blue: Optimized Resolution Image

Optimized Depth image:~31mag/arcsec²

Implications for Extragalactic Background Light (EBL)

EBL is the integrated flux received today from an area of the extragalactic sky

Two types of detection: direct measurements and integrated galaxy counts

Methods disagree in the UV/Optical with direct measurements being a factor of ~5 higher

Implications for Extragalactic Background Light (EBL)

Driver et al. 2016

Implications for Extragalactic Background Light (EBL)

Could there be diffuse flux in outskirts of galaxies that is being missed in the galaxy counts method?

Not that we found in the U band!

We found no significant extra flux in the outskirts of these 220 galaxies to make up for the EBL measurement differences.

Conclusions

Comparing to best resolution to best depth light-profiles shows that no more than 10-20% of total galaxy U-band light is missing in outskirts of galaxies down to 31 mag/arcsec^2.

This is very important for EBL studies: It suggests that the direct EBL measurements may have overestimated the total light in galaxies by a factor of several

... Or the direct measurements are seeing a truly diffuse EBL component, which you would not see, since it could get sky-subtracted out in your images --- but there are other arguments against such a large truly diffuse EBL component (see Driver et. al 2016).

JWST North Ecliptic Pole (NEP) Time-Domain Field (TDF) in the northern continuous viewing area of James Webb Space Telescope

LBT NEP Data

- Images were taken in July 6, 2016 in U, Sloan g, Sloan r, Sloan z
- 3 hours total time on sky
- Depth in each filter AB < 26 mag
- Still need Sloan i, and more time in Sloan z

Summary

We present one of the deepest ever ground-based U-band image (GOODS-N field), and surface photometry of well-resolved galaxies to ~31 mag/arcsec^2 [Ashcraft et al. 2017, PASP (submitted)].

LBT/LBC can deliver exquisite 0.35--0.95 micron images and source photometry needed to complement deep JWST/NIRCam 0.9--4.8 micron observations.