Characterizing Gas-giant Exoplanets in the Thermal-Infrared with LBTI and the Arizona Lenslets for Exoplanet Spectroscopy (ALES)

Jordan Stone University of Arizona

Andy Skemer, Phil Hinz, Manny Montoya, Travis Barman, Zack Breisemeister, Mike Skrutskie, Jarron Leisenring, Oli Durney, Chick Woodward, John Wilson, Matt Nelson, Vanessa Bailey, and Denis Defrere

What do we know about gas-giant exoplanet emission spectra?

1) Low-gravity atmospheres appear different than the field brown dwarf population, even at the same effective temperatures

1) Low-gravity atmospheres are distinct from brown dwarf sequence

Gauza+2015

1) Low-gravity atmospheres are distinct from brown dwarf sequence

1) Low-gravity atmospheres are distinct from brown dwarf sequence

Degeneracies! log(g), T_{eff}, chemistry, composition

Thermal-Infrared Constraints can Break Degeneracies

LEECH characterization of HR 8799 c,d

L-band <u>much</u> more sensitive to changes in cloud structure and chemistry: *Patchy* clouds and dis-equilibrium chemistry

Skemer et al. 2014

AO-fed integral field spectrograph built into LBTI

Only IFS operating at 3-5 microns

IFS High-contrast data processing at every wavelength: Focal Spectrograph Spectrograph **High-contrast** Plane Input Output spectroscopy Pupil Lenslets Imagery Datacube Lenslets slit + Fibres Fibres У х Mirrors slit Slicer

Diffraction Suppression

ALES built into LBTI/LMIRCam

Skemer et al 2015

Early ALES observations

Early ALES observations

The benchmark binary brown dwarf system HP Boo BC constraining models at the wavelengths where JWST will observe

Breisemeister+in prep

Early ALES observations

Stone+ in prep

ALES upgrades

- First Light:
- 50x50 spaxels
- Single waveband option:
 - 2.8 4.2 microns
 - _____
 - _

 - _
 - —
- R~20
- Plate scale for single aperture AO
 --1.2"x1.2" FOV

• <u>2017B:</u>

- 100x100 spaxels
- multiple waveband options:
 - Br γ (accretion stars/planets)
 - PAH (debris disks)
 - Ice (solar system bodies, disks)
 - Lspec (exoplanet atmospheres)
 - LM (exoplanets, solar system bodies)
- R~10-300
 - Multiple plate scales to accommodate single and double sided observations

ALES+Interferometry

Skemer+2015

Conrad+2015

Summary

- Thermal Infrared is an important spectral regime for understanding gas-giant planet atmospheres:
 - clouds/ carbon chemistry/ gravity/ temperature/ composition
- LBTI was specifically designed to provide low-background observations in the thermal-infrared
- ALES:
 - the world's only thermal-infrared IFS is being commissioned
 - will provide the constraints necessary to better understand gas-giant planet atmospheres