

ТНЕ ОНІО STATE **UNIVERSITY**

Tests of convective zone radial differential rotation in intermediate-mass core-helium **burning stars with PEPSI**

J. Tayar (tayar@astronomy.ohio-state.edu), M. H. Pinsonneault (OSU), I. Ilyin, K. G. Strassmeier (AIP)

The problem: surface rotation rates of secondary clump stars are MUCH slower than models predict

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	659821	70	147		D D
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	184199	58	184		e e
758139969138151896292384147	467630	96	121		C
8962923 84 147	581399	69	138	151	S C
	962923	84	147		(?
9346602 71 218	346602	71	218		

Core and envelope eriods from Deheuvels et al. (2015)

Surface period from Ceillier, Tayar et al. submitted)

- Core and envelope rotation periods are different
- Only one star in the sample has a measured surface period from spots
- Without surface periods, we can't tell whether the differential rotation is in the surface convective zone

2 3 Envelope v sin(i) • Y error bars are currently off the scale of this plot • Ongoing work: adding more lines, removing blended lines, improving error analysis, checking calibration, validating method 5

We have tentative evidence of radial differential rotation in the surface convection zone of intermediate-mass core-helium burning stars

LBTO users meeting, Florence, June 20-23, 2017