

SHARK-VIS: project status

F. PEDICHINI &

SHARK-VIS TEAM

LBT USER MEETING 2017

SHARK-VIS team:

Osservatorio Astronomico di Roma

- F. Pedichini (P.I., optics)
- S. Antoniucci (science)
- G. Li Causi (data reduction)
- M. Mattioli (engineering, control SW)
- M. Stangalini (AO simulation)
- V. Testa (archive, pipeline, science)

Supervisor board

S. Esposito(INAF Arcetri)E. Giallongo(INAF OAR)R. Ragazzoni(INAF OAPD)

Osservatorio Astronomico di Arcetri

E. Pinna

(SOUL)

A. Puglisi, G. Agapito

(AO simulation)

Osservatorio Astronomico di Padova

J. Farinato	(SHARK-NIR P.I.)		
SHARK-NIR team			
INAF Trieste	Archiving facility		
Steward Observatory			
P. Hinz	(LBTI)		
M. Montoya	(LBTI)		
E. Downey	(LBTI)		

LBTO & LBTO mountain crew

SHARK Science team 70+ research

SHARK-VIS MISSION: a fast track P.I. instrument to extend LBT AO-SCIENCE into the visible

Why not to go into the VISIBLE ?

- ✓ Sky background is low
- ✓ Detectors are cheap and quite
- ✓ Albedo is increasing
- \checkmark Bright recombination lines (H α)
- $\checkmark \lambda/D$ resolution 15mas at 8m (ELT at K)

(L. Close et Al. SPIE 9148 – 2014)

SHARK-VIS expected performance are based on "on sky experimental data" at 630nm from the Forerunner experiment with **5e-5** det. contrast

Pedichini+ 2017

SHARK-VIS project history:

2012 – first white paper from R to K

- 2014 SHARK bino presented to LBT SAC
- 2014 NIR and VIS from R to K with two PIs
- 2015 Signature of SHARKS CDP MOUs
- 2016 SHARK-VIS Conceptual Design Review
- 2017 Q1 SHARK-VIS Final Deisgn Review

2017 Q3 – Delta FDR

Relevant publication:

2017/01 JATIS M.Stangalini, F. Pedichini et al.: *Speckle statistics in adaptive optics images at visible wavelengths.*

2016/09 arXiv 16090514P, AJ in press. F. Pedichini et al: High Contrast Imaging in the Visible: First Experimental Results at the Large Binocular Telescope.

2016/08 SPIE.9908E..32P. F.Pedichini, F.Ambrosino et al.: *The V-SHARK high contrats imager at LBT.*

2015/10 AO4ELT 2x F. Pedichini et al. J. Farinato et al.

2014/08 SPIE.9147E..7JF. J. Farinato, F. Pedichini, E. Pinna et al.: *SHARK (System for coronagraphy with High-order adaptive optics from R to K bands): a proposal for the LBT 2nd generation instrumentation.*

2014/08 SPIE.9147E..8Fs. M.Stangalini, F. Pedichini et al.: *The solar system at 10 parsec: exploiting the ExAO of LBT in the visual wavelengths.*

2014/03 ebi..confP4.74F. J. Farinato, C. Baffa et al.: *The NIR arm of SHARK (System for coronagraphy with High-order adaptive optics from R to K bands).*

SHARK-VIS requirements strongly driven by science cases to extend LBT AO science into the VISIBLE (next talk by S. Antoniucci)

YOUNG ACCRETING PLANETS > hα PSF contrast at 150mas <1e-4 (0.6" seeing) > Detection contrast at 150 mas <5e-5 (after p.p.) > 10" ADI optimized FOV > Coronagraphy DISK AND JET MORPHOLOGY

> Detection contrast at 50 mas

<1e-3 (after p.p.) (1.2"seeing)

Fast frame rate (1kHz on 1.3" x 1.3")

Fast & low RON detector

SDI by pupil splitting

Access to pupil plane

MINOR BODIES OF SOLAR SISTEM

Wavelength coverage from

400 to 1000nm

Diffraction limited core PSF

FWHM 10-25mas

Nyquist sampling at 500nm

6.5mas/pixel

Simultaneous observing with SHARK-NIR and LMIRCAM

CLOSE BINARY STARS

PATHFINDER for Coronagraphy and exoplanets reflected light

SHARK-VIS science driven main requirements:

- 1. 10 arcsec Field Of View
- 2. Diffraction limited from 0.4 to 1 micron
- 3. Active PSF and Pupil Stabilization
- 4. Fast frame rate (1kHz) for lucky imaging
- 5. NCPA mitigation
- 6. Selectable pupil optics (stop, Wollaston, hologram, grism....)
- 7. Coronagraphy and IFU ready
- 8. ...

- a) Low budget (HW \approx 400k)
- b) Low mass < 100kg
- c) Fast Track P.I. instrument < 2y
- d) Low impact on LBTO (< 0.5 FTE est.)
- e) Designed to become an LBTO facility

SHARK-VIS the origins:

2011 - FLAO COMMISSIONING AT LBT

HIP 76041 AT 750NM

THE FORERUNNER (2015) AND CDP LAYOUT (2015-16)

SHARK-VIS timeline:

O T T I C A A D A T T I V A

NOIZAH

BUDGET and CASH-FLOW (by INAF):

SHARK-VIS today:

SHARK-VIS Forerunner Experiment

Target: GLIESE 777 R mag=5.7 NCPA correction 20 min data sequence **1 ms cadence** FLAO correcting 500 modes Band 610-650 nm

Data quality with seeing 0.8" - 1.5"

ABORATOR ADON ADON ADON ADON ADON ADATTIN

Forerunner on sky results:

- Forerunner PSF core is diffraction limited with 1.2" of unstable seeing
- DIT = 1ms PSF jitter frozen and recovered with post processing
- o 630nm with 40nm of bandwidth
- o 20 minute total exposure (70° of field rotation)
- Basic ADI processing on 1.2e6 frames (Marois 2005)
- Detection at S/N>6 of fake planets at contrast of 5e-5
- No data selection
- Achieved Detection is 10 times the photon noise

It's Science Time for SHARK-VIS Thank you!

ADI (Marois+ 2005)

- Take images at different field angles (not derotated)
- Estimate by median the PSF to subtract to every the frames

 $E = median(D_i)$

SDI

- Observe simultaneously in two narrowband filters: line and adjacent continuum
- Estimate by the continuum image the PSF to subtract at each frame

OPTICAL relay performances and tolerances:

Tries: 1000 Statistic: flat Radius: ±0.2 mm <u>Shifts</u>: ±0.2 mm Tilt: ±0.1 degrees

Only camera refocus

To avoid high order aberration $\lambda/100$ optical quality required

ABS system

HARDWARE PI PIEZO S-330

REQUIREMENTS

•Mitigates residual PSF jitter (≈ 17mas rms)

•Allows fine subpixel centering of PSF

•Compensates ADC chief ray tilt

EXPECTED PERFORMANCE

Reduction of Jitter by a factor 6 at least0.3 pixel r.m.s.

SHARK-VIS detector: sCMOS+ or EMCCD

READOUT format	Frame rate [kHz]	DIT [ms]	Data rate [MB/s-TB/h]	
2k x 2k	0.04	25	360	1.30
512 x 512	0.4	2.5	210	0.75
200 x 200	1	1	80	0.29

+EFFICIENT +DYNAMIC +FOV

-CALIBRATION

+RON +CALIBRATION +Q.E.

-SHUTTER -DYNAMIC -FOV -BLOOMING

ADC performances

4.2.4 EXPERIMENTAL BLU (450-550nm)

Figure 16 - Zenith 30°, Focus 40.31, beam tilt 0.29mm, ADC position 23°.

ADC BANDWIDTH vs WAVE

