LBT Observations of the Most Massive Galaxy Protoclusters in the Early Universe

Xiaohui Fan (Steward), Zheng Cai (UCSC) and collaborators

Questions:

How to find the most massive large scale structure at high redshift?
What are the progenitors of the most massive local galaxy cluster ?
Where are regions representing the most active galaxy assembly ?
How to find the best sightlines to probe IGM-cGM-galaxy interactions?

-- tracers: early massive galaxy overdensity and proto-clusters

How to find the most massive overdensity and protoclusters at high-redshift?

a. Use biased halos:

Quasars Sub/mm and Radio galaxies Lyman alpha blobs S-Z clusters

they trace collapsed objects, not large scale structure

b. galaxy redshift surveys

small FOV for deep field, limited survey volume, incomplete selection because of wavelength coverage and selection technique.

A more complete technique to search galaxy overdensity and protocluster from larger volume will be highly desirable

A simple idea: HI absorption traces matter overdensity

Peirani et al. (2014)

Lyman alpha absorption

SDSS-III/IV provides all sky quasar spectroscopy at z=2.5-3.5

-- For each quasar at z=2.5, we could prove z=2.0-2.5, which is about 500Mpc -- SDSS has >200,000 quasars over > 10,000 deg²

-- Survey volume of >20 Gpc

-- two orders of mag larger than using galaxy redshift survey to search for protoclusters

-- rarest, most massive protoclusters

MAMMOTH

Advantages:

Very large volume probed

Our-biased tracing: dark matter overdensity-> Hydrogen overdensity, and no duty cycle issue

Clean physics (UV background uniform at large-scale) HI-> Hydrogen

Simulation shows that MAMMOTH-selected systems are likely the most extreme galaxy protoclusters (~15Mpc scale), representing the 0.5% most massive structures at z~2

BOSSI44I: the first MAMMOTHselected candidate galaxy protocluster (z=2.32)

Traced by multiple strong IGM absorptions and multiple quasars within 40 Mpc

Deep Optical Imaging: KPNO-4m Narrow-band + LBC Broadband

Cai et al. (2017b)

LBT/MODS Spectroscopic Follow-ups Observations on BOSS1441

MAMMOTH

Physical properties of the overdensity/protocluster (BP14)
galaxy overdensity in 30h⁻¹ Mpc scale
peak overdensity of LAE: 11 +/-1
total mass (within 15Mpc): ~10¹⁵M_{sun}
progenitor of current day massive cluster

The most overdensed high-z proto-cluster known

Name	$\langle z \rangle$	Scale	δ_g	mass	Reference
		Mpc		$10^{14}~{ m M}_{\odot}$	
MRC0943-242	2.92	20	$2.2^{+0.9}_{-0.7}$	4-5	4,5
COSMOS34 a	3.04	15	$2.28^{+1.04}_{-0.79}$		8
Slug ^b	2.28	10	modest		8
SSA22	3.09	23	$3.6^{+1.4}_{-1.2}$	~ 10	1
TN J1338-1942 c	4.1	18.	$3.8^{+1.1}_{-0.8}$	7	4,5,6
J1431+3239	3.733	15	4.2 ± 0.9	7	5
HS 1700+643	2.300	19.5	5.7 (6.9 in paper)	12	2,3
This work	2.329 ± 0.013	15	10.6 ± 0.7	10	
This work	2.329 ± 0.013	19.5	8.3 ± 0.7	16	

ultraluminous Lyman alpha blob/nebula MAMMOTH-I at the center of overdensity

A Ultra-luminous Ly alpha nebula

Size - luminosity of various Lya nebula

MAMMOTH

LBT/MODS Observations: large scale kinematics never seen before in other giant nebulae

gas outflow model (AGN feedback)

MAMMOTH-1 is powered by a type-II AGN at z=2.3

Wavelength

LBT/LUCI Argos commissioning observations

MAMMOTH-1 field, 4' FoV FWHM = 0.20"–0.25" in K-band

K-band (LBT/Argos)

Br-Gamma filter (LBT/Argos)

K-band (Subaru, 0.5" seeing)

MAMMOTH protoclusters: BOSS1244 and BOSS1542 at z=2.20+/-0.03

CFHT/WIRcam $H\alpha$ emitters down to L*

Together with BOSS1441, we construct a LSS sample at z > 2

Cai et al. in prep, An et al. in prep.

MAMMOTH

LBT/LUCI confirmation of HAEs

LUCI I+ II, 2-hours per mask, totally 4 masks. Successful confirmed 70% of HAEs. Detailed analysis to be done.

Summary

- LBT provides a powerful suite of facility instruments for deep extragalactic surveys
- ARGOS will be a game changer in near-IR high-z surveys in the near future